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Velocity Inversion by Coherency Optimization *

William W. Symes

May 1988

Abstract

We introduce an approach to velocity and reflectivity estimation based
on optimizing the coherence of multiple shot-gather inversions of reflec-
tion seismograms. The resulting algorithm appears to avoid the severe
convergence difficulties reported for output (nonlinear) least-squares in-
version. We describe in detail an algorithm appropriate for the layered
acoustic model, using the convolutional model of the plane-wave (p-tau)
seismogram. We give a theoretical analysis and numerical evidence that
coherency optimization, as defined here, yields stable and reasonably ac-
curate estimates of both velocity trend and reflectivity, by exploiting re-
flection phase moveout and amplitudes in a computationally efficient way.
We also indicate how the approach may be modified to apply to later-
ally heterogeneous acoustic models, and (more briefly) to determination
of elastic models and source parameters as well.

1 Introduction

Multi-offset model-based inversion is of interest in the processing of wide-angle
seismic reflection data, both for structural information and for the extraction
of reflection characteristics directly indicating the presence of hydrocarbon de-
posits. Almost by definition, techniques designed to extract such information—
ray-trace velocity estimation, amplitude-preserving before-stack migration—
have the character of partial inversion algorithms, and analysis often reveals
that the relation is quite deep.

Inversion algorithms based on the full seismic waveform have been discussed
extensively over the past several years; see e.g. Tarantola (1986), Gauthier
et al. (1986), MacAulay (1985), Mora (1986), Kolb et al. (1986), Lines and
Treitel (1984), Bamberger et al. (1982), for a small sample. All of the work

*Research supported in part by the Office of Naval Research under contract N0O00014-85-
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Jjust cited is based on the output least-squares principle, according to which a
subsurface model is required to generate (synthetic) sections which simultane-
ously fit a corresponding set of data sections in the least mean-square error
sense. This approach does not require picked travel times, unlike reflection
tomography (Bube et al. (1985), Lines et al. (1987)), and in principle could
extract an optimal distribution of seismic velocities as well as reflection am-
plitudes, unlike linearized inversion (Ikelle et al. (1988), Cohen and Bleistein
(1979), Clayton and Stolt (1981), Beylkin (1985)). In addition, any desired
level of detail concerning the physics of seismic wave propagation may be built
into the output-least-squares principle, and it may also incorporate non-seismic
constraints (Lines et al. 1988).

In practice, it has proven difficult to realize the apparent promise of least-
squares inversion even when applied to synthetic data sets. Since the problems
are computationally large, only iterative methods are feasible, and these require
for their efficient convergence a measure of convexity often not possessed by the
mean-square seismogram error (see e.g. Tarantola (1986), Hadjee and Collino
(1988), Santosa and Symes (1986), (1987)).

The cause of this non-convexity is the extreme sensitivity of the synthetic
seismogram to changes in the slowly-varying components of velocity, as will
be reviewed in Section 2. Thus velocity trends emerge slowly or not at all
as iteration proceeds, and the reflectivities are correspondingly degraded. For
layered medium problems, Kolb and others have developed a number of con-
tinuation and reparameterization strategies which render the optimization more
tractable (Kolb, Collino and Lailly (1986), Canadas and Kolb (1986)). Only lim-
ited tests of these devices (and no theoretical justification) have been reported,
however, and it is difficult to understand how lateral heterogeneity might be
accommodated by these techniques. Straightforward least-squares inversion of
two-dimensional acoustic and elastic models has appeared to require a priori in-
formation of the gross model (velocity) features of very high quality and, when
such information is provided, the results closely resemble those of carefully de-
signed amplitude-preserving migration—unsurprisingly, as these are essentially
equivalent (Lailly (1984), Gauthier et al. (1986), Mora (1987)). In fact, the
principal tangible result of the work on least-squares inversion so far has been
to provide a version of migration which may conceivably yield estimates of elas-
tic reflection amplitudes (Tarantola (1984), Mora (1987), Burridge and Beylkin
(1988)), hence a rational basis for amplitude versus offset analysis. While this
is an important step, it appears that least-squares inversion has not so far ad-
vanced the estimation of velocities in regions of complex structure, and without
such velocity information its depth-migration function is disabled as well (San-
tosa and Symes (1986), Spratt (1987)).

It is important to understand that the difficulty is not due to inadequate
modeling of seismic wave propagation, or to the features of field data (beyond



specifying the general character of any useful model). That is, least-squares
inversion fails for essentially mathematical, rather than (geo-)physical, reasons.
These reasons are explored in depth in the monograph, Santosa and Symes

(1986).

The purpose of this paper is to propose another approach to full-waveform
seismic reflection inversion, in which the coherence of multiple reflectivity esti-
mates is optimized. While the basic ideas behind this approach are quite old,
our use of them in designing an optimization algorithm for inversion seems new.
Moreover, coherency optimization appears to avoid the mathematical pitfalls
which often prove fatal to output-least-squares inversion while producing the
same type of subsurface estimate.

Minimal requirements for a useful model-based inversion algorithm might be
stated as follows:

(a) Stability: at least for data which are nearly model-consistent, the esti-
mates of subsurface properties should “degrade gracefully” in the pres-
ence of data noise;

(b) Computability: for ilerative methods, this means that convergence should
occur at a reasonable rate, and for “poor” initial estimates, i.e., con-
vergence should not require knowing the answer beforehand;

(c) Completeness: the algorithm should extract “most” of the information
about the model implicit in the data, and the user should be able to have
confidence that it has done so.

Of course, an algorithm which meets these conditions may still fail: be-
sides these mathematical requirements, one must also impose the (geo-)physical
requirement that the underlying model faithfully reflect the physics of the re-
flection seismology experiment, at least at the level of detail desired in the
subsurface estimate. While this physical consistency is the ultimate limiting
factor in the utility of any inversion algorithm, our focus in this paper will be
limited to the necessary preconditions (a)—(c) above.

In the remainder of this introduction, we shall outline the coherency opti-
mization algorithm in general terms. In succeeding sections we shall:

§2: formulate coherency optimization precisely for the simplest interesting
model: layered, constant-density acoustics;

§3: analyse the algorithm of §2 in some detail, demonstrate that it possesses
the atiributes (a) through (c) above;

§4: describe a numerical implementation, and ezhibit the results of some
numerical ezperiments, which establish feasibility;



§5: formulate coherency optlimization for the simplest non-layered model,
i1.e. general constant-density acoustics, to demonstirate that this ap-
proach is not an artifact of wave propagation in layered media.

In the concluding Section 6 we recapitulate the properties of coherency op-
timization and its comparison with other approaches, and offer a few more
observations concerning the range of models to which the technique might be
applied.

The paper is written so that Sections 3 and 5 are not prerequisite to the
others. The basic assertions of the paper are stated verbally in this introduction,
then with some mathematical precision in Section 2, and illustrated numerically
in Section 4. Thus the reader who wishes to avoid the analytical justification of
these assertions can skip Section 3 without losing the thread of the argument,
and those interested only in layered problems may likewise avoid Section 5.

Coherency optimization is easiest to describe in the context of the lin-
earized seismogram, in which the model is regarded as the sum of smooth
background model and a highly oscillatory (“rough”) perturbation (reflectiv-
ity section). Note that the smooth background velocities are still regarded as
part of the model, so it is still nonlinear. With some high-frequency approxima-
tions (“WKBJ Seismogram”) the inversion of each common-source (or common-
receiver or common offset) gather for a given background velocity may be accom-
plished semi-analytically (perhaps the best reference is Beylkin (1985)), by what
amounts to an amplitude-preserving before-stack migration. If the background
model] is correct, presumably the images from the various inverted gathers will
line up. If not, the discrepancy indicates that the background (“migration”)
velocity ought to be changed.

So far, this is hardly novel: a process called “iterative before-stack migra-
tion” is described in just this way in Kleyn (1979), for instance. The refine-
ment leading to a feasible algorithm is the introduction of a well-behaved cost
function, which we dub the incoherence, which both measures the discrepancy
between the various common gather inversions and indicates how the velocity
fields should be changed to line them up (through its gradient). A natural choice
is stack power or semblance (Fowler (1986), for example), but this leads directly
back to the nonconvexity difficulties of output-least-squares: the two are very
closely related (Santosa and Symes (1988), Appendix A). Instead, we depend
on the accurate inversion of amplitudes, and take the mean-square of the differ-
ences between successive inverted gathers. These differences should all vanish at
the “correct” velocity estimate. Most important, as the background velocity is
changed, this incoherence (or “differential semblance”) changes smoothly, rather
than abruptly as is the case with stack power (this is illustrated in Section 4).

Two technical refinements are necessary to turn this idea into an algorithm.
First, data noise which is uncorrelated from gather to gather will yield a very



large contribution to the differences of the inverted gathers, completely distort-
ing the incoherence and masking the correct choice of velocity. To avoid this
oversensitivity to data noise, partly decouple the inverted gathers from the data:
lump these reflectivities (one per gather) together with the background velocity
field as the “model” to be determined, and redefine the cost to be the sum of:

(a) all of the mean-square data errors, i.c. differences between data seismo-
gram and predicted seismogram based on the corresponding reflectivity
section, and

(b) the mean-square sum of pairwise differences of reflectivity sections (in-
coherence).

Incoherent noise in the data gathers will be accounted for mostly in error-
of-fit (i.e. (a)), as it should be, since it causes a much smaller increase in cost
that way than when forced into the incoherence (i.e. (b)).

The second technical modification is required by the nature of the model-to-
seismogram relation: as pointed out above, this relation is extremely sensitive
to the background velocity component, when the model is defined in terms of
depth (and offset). This oversensitivity is due to the time shift accompanying
a change in background velocity, which causes the temporal location of a high-
frequency reflection from a (depth-) fixed reflector to change. For a discussion
of this “time-shift” disaster in the one-dimensional context see Symes (1986).
The remedy is clear: the reflectivity sections should be defined as time sections
rather than as depth sections.

For the layered acoustic problem which occupies most of this paper, it is
rather trivial to accomplish this transformation. It is particularly convenient to
work with plane wave sources, since the gather corresponding to a planewave
source at definite slowness has only one independent trace. Thus a single reflec-
tivity time trace at each slowness, together with the (single) background velocity
depth profile, specifies the model. The reflectivity time traces are converted to
depth traces through the (background) vertical travel-time-to-depth transfor-
mation appropriate to each slowness. The high-frequency approximation to the
(p-tau) seismogram is simply the convolution of the time-trace reflectivities with
the source wavelet whereas the incoherence is essentially the derivative of the
corresponding depth-trace reflectivities with respect to slowness.

For laterally heterogeneous models, the transformation from time to depth is
less obvious. As explained in Section 5, the analogue of the travel-time-to-depth
change of variables appropriate to plane waves in layered media is in general a
before-stack Kirchhoff migration appropriate to the acquisition geometry being
simulated, and the reflectivity gather is simply a time section. The incoherence
is a difference (or derivative) with respect to shot location (for shot gathers) of
the migrated reflectivity depth sections.



Two points remain to be emphasized. First, there is nothing to “cohere”
unless reflectors are present, i.e. unless the reflectivity gathers are rich in high-
frequency energy. As is the case with semblance, the incoherence is a measure-
ment of the portion of moveout in reflection phase not accounted for by the
current velocity model. Therefore the density of reflectors is a limiting factor
in the recovery of accurate velocity models, as is the data aperture. These
observations are quantified in Section 3.

Second, both incoherence and data misfit are summed in the cost functional
for coherency optimization. Thus both are minimized simultaneously. The
major theoretical result of the paper (Section 3) is that, with appropriate weights
on the two components, sufficiently dense reflectors, and enough aperture the
cost functional is smooth and convex for near-consistent data. The favorable
computational consequences are exhibited in Section 4.

2 Output least-squares vs. coherency optimiza-
tion

Denote the plane-wave (“p-7”) seismogram corresponding to a velocity profile
¢(z) by S[c]. The arguments in this paper are based on the well-known convo-
lutional approximation, which is reasonably accurate when ¢ may be re-written
as a sum

c+ Ac

where

¢(2) is a slowly varying background velocity model

Ac(z) is a rapidly varying “reflector sequence,” having locally zero
mean on the length scale of significant change in the background
velocity.

Thus the (two-way) travel-time to depth z of a precritical plane-wave at (hori-

zontal) slowness p is determined with a small error by the background velocity
¢(z) according to

z 1 ) 1/2 zq
'
e =2 [ d (cZ(z)"’> =) v

where v is the vertical (plane-wave) velocity at slowness p:

~1/2
v(z’p) = (;5%2-7 —_ p2) = c(z)A(z,p)
A(z,p) = (1-=c*2)p?)~ V2



The convolutional approximation with (isotropic) source wavelet f(t) is then
Sle,Ad(t,p) = v(0,2)7(f * Z)(t.p)
= wop ld' It -)5(E,p)
where the “reflectivity” r(¢, p) is given by

_ Av(((t,p),p)
v({(t,p), p)

by means of the inverse two-way travel-time function ¢, defined implicitly by

¢(t.p)
t= 2/ l,
0 v

and the vertical velocity perturbation

(1)

r(t,p) (2)

Av = Ac- A3,

Note that reflectivity conventionally means 8r/8t; we shall confuse r and its
t-derivative, calling both “reflectivity” as convenient.

Now S is clearly linear in Ac, but quite nonlinear in ¢. In fact, a change
in ¢ will typically result in a change in the “phase” ¢, and thus in a shift
in the high-frequency components of S, which in turn derive from the high-
frequency components in Ac. Since such a phase-shift may have a drastic effect
on components of the appropriate (high) frequency, and since Ac must have a
great deal of high-frequency content in order to model the dense distribution
of reflectors in the typical sedimentary column, one expects S to be extremely
sensitive to changes in the background velocity c.

This oversensitivity to background errors shows quite clearly in the expres-
sion derived for the perturbation §S in the seismogram, due to a perturbation
6c in the background velocity (holding Ac fixed, and assuming 6¢(0) = 0):

85(t0) = (0.0 + 7 (53604 () (€.),p)

where

8¢(z,p) := 8(r(z,p),p) =
v(z,p)/ dz'v(2', p)e™3(2")be(2")
0

is the phase perturbation corresponding to Ac, referred to depth/slowness co-
ordinates.



Thus the z-derivative of Ac (or, of r) appears in the perturbations §S as-
sociated with a background velocity perturbation éc. On the other hand, a
perturbation §Ac in Ac simply results in

8S ~ Sle, 6A¢]

as S is linear in Ac — thus no derivative of Ac is involved.

Again, Ac must be highly oscillatory to model the typical reflector distribu-
tion, so the derivative of Ac is typically much bigger, in any reasonable sense,
than is Ac itself. Thus perturbation of the background velocity ¢ has a much
larger effect on S than does perturbation of Ac: in the language of linear algebra,
the linear perturbation map (“Jacobian”)

be, 6Ac— 6S

is tll-conditioned.

Even worse, a straighforward extension of this reasoning shows that the
difference between the perturbed section

S+ 6c, Ac+ 8Ac]

and its linear prediction
Sle, Ac)+ 6S

can easily be on the order of S itself, even for quite small éc.

To summarize: under realistic assumptions on ¢ and Ac,

(i) the Jacobian 65 is ill-conditioned;

(i1) S is poorly approximated by its linearization.

Consequently, the output least-squares objective function

Tle, A6 Sgatal = [ [ dpatisle, Acl = S gl

is highly non-convex, with rapidly changing gradient, and the optimization prob-
lem
TAI:J[C’AC;Sdata] 3)

is extremely difficult to solve by means of any variant of Newton’s method. For

extensive discussion and illustration of these points, consult Santosa and Symes
[1986].

The crux of the difficulty is the interaction between the background ¢ and the
reflectivity r through the definition (2). Accordingly, it is tempting to decouple



c and r by treating r, rather than Ac, as the “other” component of the model:
thus define

& - or
S[C, T](t,p) = U(O,p) lf * 'ét_(t;p)
Certainly if » and Ac are related by (2) then

Sle, Ac] = Sfe, 7).

In fact, apart from the surface normalization, the background velocity ¢ enters
the definition of S only implicitly, through the condition (2). If we are to use r
as one of the independent variables, instead of Ac, we must develop a condition,
phrased only in terms of ¢ and r, which guarantees that (2) holds. Fortunately,
this is rather easy: from the useful identity

Av  Ac
wES )

it follows that, if (2) is satisfied, then
c™(2)Ac(2) = v™*(z, p)r(7(2,p), P)- (5)

The notable quality of (5) is that the left-hand side is independent of p. Thus
differentiation with respect to p eliminates Ac altogether:

0. _
0= o[ (z, Dr(r(z,p), P (©
D
It is easy to reverse this reasoning. Thus:
A section r(t,p) is the reflectivity corresponding to Ac(z) if and
only if (6) is satisfied, in which case Ac is given in terms of r(t, p)
and c(z) by (5).
In formulating the constraint given by (6), it is advantageous to return to (¢, p)

coordinates (the reason will become apparent below). Thus define the quantity
Clc, r] (the incoherency) by

Cleurl,p) = { 5 v p)r(r(e,) P |

z=((t,p) .

Then
Sle,Ac]l = S 414

if and only if ;
S[e, 7]

= Sdata
and Cle,r} = 0



with Ac and r related by (2) or (5).

Since the problem is clearly overdetermined, it is commonplace to replace
the exact fit of predicted to measured seismograms by a best-fit condition. We
shall folow the lead of most authors on this subject (e.g. Tarantola and Val-
lette (1982)) and use the mean-square error measure. Some notation for this is
desirable: for a single z- or t-trace, e.g. f(t), we write

= ([ 1sor)

whereas for a (t, p) or (2, p) section, e.g. F(t,p), we write

tmax Pmax 1/2
||1Fn|=(/0 a dpp|F(t,p>|2) .

The weight p in the integral defining ||| ||| is a residue of polar coordinates, and
is used to make the norm ||| ||| as close as possible to equivalent to the ordinary
mean-square of an z-t section. See Santosa and Symes (1988), Appendix B; also

Brysk (1986).

In view of the equivalence noted above, it is natural to pose the constrained
least-squares problem:

1/2

minimize |||S[c,r] - S |2
e,r ” [ ] data” (7&)
subject to  Cle,r] = 0.

This problem is closely related to the output least-squares problem (3). In
fact, the relation is too close. The two problems have the same solution, and in
fact are mathematically quite similar as well, so that (7a) is also poorly suited
to computation. To obtain a problem which is not too “stiff” we “relax” (7a)
by making the constraint C = 0 soft:

L J~ ’ ,S
mzz:r;'uze le;7 S datal (7b)

where ) _
Tle,r, S gata) = ISle, 7} = Sgasalll? + 2HIC e, I

We shall call (7b) the coherency optimization problem.

From the equivalence above, we see that if S, is consistent, i.e. Sy,4, =
Sle, Ac], then the problem (7b) has [c, r] amongst its solutions for which r and
Ac are related by (5). That is, for consistent data, (7b) has “the same solutions”
as the output least-squares problem (3). We shall show, however, that (7b) is far
better suited to numerical computation by Newton’s method and its relatives.

10



We shall also show that the solution of (7b) is stable, i.e. “degrades gracefully”
in the presence of data error, for reasonable choices of the penalty parameter o.

These conclusions are true provided that S j,;, is near (in the mean-square
sense) some “exact” or consistent data S[c, Ac], and provided that ¢, Ac satisfy
certain conditions. “Physical,” or poetic, statements of these conditions are:

(1) Ac should be “rough”, i.e. contain significant variation (reflectors),
on a length scale dictated both by the wavelet (f) passband and by the
smoothness (characteristic length) of c;

(ii) The range of slownesses p available in the data (“aperture”) should be
sufficiently large relative to both the degree of roughness mentioned in
(i) and the amount of data error, so that the moveout of reflections
clearly discriminates the velocities.

It is also necessary that the penalty parameter o be chosen appropriately.
“Appropriate” means, so that the desired properties are obtained, i.e., so that
Newton’s method works (from a poor initial guess) and so that the solution
obtained is relatively insensitive to data error. The main theoretical result of
this paper is that such an appropriate choice of ¢ is possible, provided that (i)
and (ii) are satisfied in a suitable sense, and that this choice is robust.

Note that in the limit 0 — oo, (7b) becomes (7a), i.e. the constraint becomes
hard. Previous remarks have indicated that (7a) (or (3)) is not susceptible to
numerical solution through Newton’s method or its relatives. Thus the possi-
bility of choosing & “not too large” is crucial to the construction of algorithms
which converge from a poor initial guess.

In the following section we will carefully quantify (i) and (ii) and justify these
conclusions through an analysis of (7b), and in section 4 we will present the re-
sults of some numerical experiments, along with a discussion of implementation
issues (e.g. choice of o).

3 Analysis of the coherency optimization prob-
lem

The local analysis of optimization problems amounts to the verification of several
conditions concerning the first and second derivatives of the objective function.
These conditions are imposed near a particular solution, and guarantee that
this solution is stable under data perturbations. The same conditions ensure
rapid local convergence of Newton’s method. We state the verbal description of
these conditions here, together with the interpretation in terms of the quantities
introduced in the last section:

11



T

(i) (Regularity) The objective function should be twice differentiable near
the solution.

This is completely obvious for the seismogram error, as it is independent of
¢ and quadratic in r. For the incoherency, the regularity is obvious from the
1dentity

Cle,7](t, p)

% (v(z,p)"zr("(z’p)’p))L:((m)

)+ ) (- 50}
(8)

Clearly varying ¢ will have the effect of differentiating v — but ¢, hence v, is
presumed sufficiently smooth that its derivative is not significantly larger than
c itself. On the other hand, no additional derivatives of r (the locus of high-
frequency energy) result from varying ¢. Thus C may be regarded as regular.
Note that the perturbation of C would involve further derivatives of r if we had
left off the final referral back to time/slowness coordinates.

(ii) (second-order sufficiency): The objective Hessian is positive-definite.

Most of this section is devoted to verifying this last condition; it is the source
of the requirements mentioned at the end of the last section.

The Hessian is the second-order coefficient §2. in the power series expansion
Jle + ebe, r+€br, Sgu4,)

-~ ~ 2 ~
= Jle, 1, Sgqral + 87 + 582 + ..

In view of the goal, enunciated at the end of the last section, to examine
the perturbation of a consistent solution due to perturbing the data, we shall
assume that _

Jle, v, Sgatal = 0-
That is, that
Sle,r) = S 444 and Cle,r] = 0. 9)

Let us state very carefully the meaning of the condition (ii) in terms of
62J: i.e. 62J is positive. Condition (ii) actually requires that 62J be “positive
relative to” 8¢, ér: for some L > 0,

1627111 > L(ll6ell® + g ) (10)

Indeed, as follows from the proof of the implicit function theorem, as L — 0 in
(10), the size of the region of convexity (within constrained models) of J goes to

12



zero, and the possible ratio of solution error to data error goes to infinity. Thus
we need not only L > 0, but some positive control over L, to ensure stability
(and computability) of the solution.

An easy calculation gives
= 7]
627 = 2[1f * 5 6rllI” + 202 |}5CI 1%

Thus as a first requirement, we must have (for each p)

a 0
If * 5567l 2 Kull 5567 (11)

for some constant K; > 0. Unless K, is to be uselessly tiny, this means in
effect that each trace ér (p = const.) (hence eventually r) must have most of its
energy in the passband of the source f, or else that the out-of-band components
must be constrained a priori. We adopt the first option: i.e., that we shall
estimate only passband reflectivities. In quantitative terms, K; should be at
least some substantial fraction, say one-half, of the absolute moment of the
wavelet (this choice is justified by the theory of convolution operators, and is

essentially optimal):

Inequality (11) only shows that 62J majorizes I13]]|2. Reference to (10)
shows that this is inadequate—unsurprisingly, since we have not made full use
of the hypotheses of (ii). To go further, we must introducd the linearized con-
straints (since otherwise éc is unconstrained). As we have assumed ¢,r, S data
consistent, i.e. the system of equations (9), this simplifies considerably. The
calculation is displayed in the Appendix: with Ac given by (5), we obtain the
identities

6C = 6C+6.C (12a)
6.C = =2p{2{(Qbc)Ac™! + (f; Qbc)p*A3c'] (B2)
+[(s @)™ A] £ (4} .~ (12b)
6:C = Cle,ér]
= {-(,;‘)—p(v'zéror)} o( (12¢)
Here the quantity Qéc is defined by
Qée: [b(vo)]orT

A3(bc+c'v [ v-ﬁ-% .

13



Also, we have used the useful notation

gor(z,p)=g(r(z,p),p)

for (any) function g(t, p) and similarly for the symbol o(.
The further analysis of this condition in general is a little involved. We
consider in detail only the special case

¢ (hence v) constant for z > zg (13)
é¢  (hence 6v) =0 for z < zp.

A few remarks about the general case appear near the end of this section. See
Figure 1.
Under this restriction, 6.C simplifies considerably: Qéc = A36c, and

6.Cor=~2pAic? {26cAc+ (‘/‘ %' (66" ’} .
0 L

0
—A?% = 2pc®At.

dp
Thus what remains of (12a) is an exact derivative in p, so we integrate in p from
p1 to py to obtain

Now

c™* {26cAc+ ([ 6c) (%8<)} A2|z: = v 2%(ro r)lZ? + :’ dp(&;Co T)

= ¢ 2A"%(bro r)|:: + :1’ dp(é/C o).
(14)
Equation (14) will be the “hook” to get §2J into an explicit relation with

bc. This is accomplished in three steps. First, we make use of an important
by-product of the assumed bandlimited feature of f:

Since f, hence r,6r, has its energy concentrated away from 0
Hertz, the t-derivative of ér is at least as big (probably much
larger) than ér itself: for each p,

aér ||

<
Kallerl? < | %

for a constant Ko depending on the lowest passband frequency.

Together with (11), this gives

KK ||lérll” < 627, (15)
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The second step is to manipulate (14) into an inequality with |||6r||| on the
right-hand side. This is accomplished with the aid of several identities relating
time and depth, which are massively simplified by assuming that ¢ = const.
where éc # 0, as we have done.

According to the hypothesis (13), for z > zg

e(z) = e for 2>z
r(z,p) = To(p)+%%§-
where
7o(p) = 7(20, )
and

Ai(p) = (1= cfp*) 71 /2
Thus (since (14) implies éro T =0, z < 2o):
[ dzlér(7(z,p), p)I?
= zahi(p) [dt|6r(t,p)f (16)
= zah(p)lér]®.

|67 o 7)|2

Now set py = p, p2 = %pmax + p, and integrate \/p times the first summand
on the r.hs. of (14) from p = 0 to p = Lpmax (for fixed z) neglecting the factor
of =%

+ foépmnx dp\/ﬁ (A1—26r o T)'}l:"" %ngx

S foipm" dp\/l—) {Al—ziér ° T”P""%Pmu + A1_2!67‘ ° TIP} (17)
< f:“‘“ dp\/p AT2|6r o 7]

< (™ dpAT?)? (Jg™ dppAT |6roT]?)?.

Applying the same step to the absolute value of the L.h.s. of (14) gives

't {26cAc+ ( /0 ’ &:) (%) } A(c1, Pmax) (18)

1

Mot pmas) = [ dpyF (Al + gpmme) — A1)

The modulus A(c1, Pmax) satisfies A(0) = 0 and A(e1, Pmax) — OO0 88 Pmax — 1/¢1
(since the integrand has a nonintegrable singularity at pmax = 1/¢1). Otherwise
A is best investigated numerically; a plot of A vs. ¢1, pmax appears as Figure 2.

where

Pm

15



Clearly, in order that A >> 0 it is necessary that ¢;pmay be relatively close to
1.

Since (17) is valid with either sign, we can square both sides of the inequality
we have just derived from (14), (17), (18) and make an obvious estimate of the
second term on the r.h.s. of (14) to get:

{28cAc+ ([ 6c) (282)}
< Mer, Pmax) ~2e2 [(fT™" dpAT®) fI== dppA[t|éro7|?
+ felpdax O™ dppléC o 717

integrate both sides in z, and make use of (16):

2 [ 2
l26cAc + (f7 6c) (229)| ¢ (19)
< Al(clapmax)|l|5r|||2+’\2(clypmax)|”6 |HZ

where A; is given by

1 _
’\l(clypmax) = '2’6?’\(Clapmax)—2/ A1 3
0

and

1 -
/\2(Clypmax) = ZC?’\(CI»pmax)_z/ Al 3~
1}

A plot of A; appears as Figure 3. Evidently:

In order that Ay be small, it is necessary that cipmax be relatively
large (near 1).

This is still not quite what is required, as we have an estimate on the left-hand
side of (18), not on éc itself. The third step amounts to the observation that, if
dc is smooth enough, and Ac rough enough, then this quantity cannot be small
without éc itself being small.

This observation is the most physically-meaningful, and the most difficult
to quantify, of the points presented in this paper. As illustrated thoroughly in
Santosa and Symes (1986), the local behaviour of the seismogram function near
a rough model is quite different from that near a smooth model, and it is this
property that is being used implicitly at this point.

A rigorous semiquantitative treatment of roughness is found in Symes (1988),
and the present problem can be treated along the same lines. Such rigorous
argument is neither particularly enlightening, however, nor very precise. For the
present, a numerical illustration of this property will suffice. The smoothness
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of the velocity model ¢ and its perturbation are guaranteed for example by
insisting that

c(2) = coexp {z] lz,zl)J(z)}

be(z) = oiC; 6259i(2) - e(z)
where {%;} is a finite, smooth set of basis functions. In the tests reported in
Section 4, cubic b-spline integrals are selected for the {#;}: these have associ-

ated with them a definite length scale (“width”); see Figure 4. Then in vector
notation,

ll6cAc]|® = 62T RO6z
where

R = [ de w2 ()

i1s the N x N symmetric positive-semidefinite “roughness matrix” associated
with Ac and the basis {¢;}.

Similarly
”66”2 = 6zT Méz
and
”( ) 0Ac|® _ = §zT RW§y
where

#)= [ (f4) ([ o) o (5o)
0
and M is the symmetric positive-definite “mass matrix”
M;; = /dz d),-(z)d)j(z)cz(z).

It follows that
pQllbell® > [l6cAc])? (20a)

where /lsge)xx > 0 is the largest eigenvalue of the N-dimensional generalized eigen-
value problem

ROy = uMy. (20b)
Likewise, \
et < | ([ o) 95 (200)
0 32
where pgi)n is the least eigenvalue of the generalized eigenvalue problem
RWy = uMy. (20d)
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Finally,
2 A
pmillel” < l2sease + ([ 62) Zo1 (20¢)
0

‘) oz

where 1 is the least eigenvalue of the generalized eigenvalue problem
Ry := (2RO 4+ RM)y = uMy. (20f)
Combining (19), (20a), (20c) and (20d) we get

I—‘min||5cn2 < /\1(01,Pmax)lll5rlll2 + ’\2(Cl:Pmax)”|6C|“2 (21a)

and .
pmin > (S — 4p(2,). (21b)

Obviously inequality (21b) has force only if pgi)n >> pEf,’Qx, that is, dAc/0z is
much bigger than Ac, whence Ac must be rough. In fact, Ac must be uniformly
rough on the length scale of significant variation in ¢. To see this, note that
the worst possible situation is when R(®) and R(}) have a common null vector,
since then the left-hand side of (19) constrains the corresponding component
not at all. This can indeed occur. Note that the integrated spline basis {t;} is
so constructed that 1; — 1;4+1 vanishes outside an inteval I;, encompassing five
spline nodes: see Figure 5. Suppose that for some j, Ac = 0 in the interval I;:
that is, there are no reflectors in I;. Set éz; = 1, éz;41 = —1, dz; = 0 for i # j.
Then RW6x = 0, j = 0, 1 so u = 0 with eigenvector 6z for both matrices.
Thus:

In order that pgi)n > 4;1532\,( > 0, significant reflectors must be

present in every depth interval of the characteristic length scale

of the smooth model class.

In fact, it turns out that this condition is also necessary in order that the
“combined” eigenvalue pmi, be reasonably large, as we shall see below.

Note also the connection with the wavelet passband. In order for the convo-
lutional model to be accurate, ¢ must have almost all of its energy concentrated
below the passband (or rather its spatial analogue): that is, ¢ must be smooth
on the spatial wavelength scale. Suppose that ¢ is chosen to attain, roughly, the
maximum degrees of freedom permitted by this constraint. Thus the length scale
associated with the background model is roughly the largest spatial wavelength
in the data, and we can re-phrase the above conclusion as:

In order that (19) above constrain bc, significant reflectors must

be present in cvery depth interval longer than the longest spatial
wavelength in the data.
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This necessary condition is actually also sufficient, when made appropriately
precise (Symes 1988; see also Santosa and Symes 1986). We illustrate the suf-
ficiency by introducing the reflector sequence Ac figuring in the experiments
of Section 4. See Figure 6. We have computed the extreme eigenvalues of the
problems, (20b), (20d), (20e). For N-dimensional integrated spline space, the
characteristic length scale (i.e. the length of I;) is proportional to 1/N. In
Figure 7, we tabulate pﬁ,‘.’&x, "gi)n’ and pmin against N, along with the charac-
teristic length scale; for the background velocity profile we have taken the profile
in Figure 6 also. We have not restricted the non-zeros of §c to the ¢ = const.
segment, so this is a more severe test than warranted by the present discussion.
Evidently, the criterion above is indeed sufficient to guarantee ugi)n - 4;;&,?2,,( >0
in this case and appears necessary to have pmin >> 0.

We now combine the conclusions of three steps: (13), (19), (20e), to get

A Az

Hmin 2 2%
— 6 <6 = —— —_—
7 BP0 v= g+ o

and, using (15) again

min (3aK?, 220 (el + o) < 67 (2)

which gives an explicit estimate for the constant L in (10), as required. Note that
this constant of proportionality is neatly separated into pyin, which depends
only on the roughness of Ac, relative to éc, and v, which depends on aperture
and passband amplitude, and on the penalty parameter o.

Note the role of o in (22): it is only the quotient Ap/a? which influences the
lower bound. The aperture-dependent A; and A, are of roughly the same size,
so the requirement that the lower bound be reasonable imposes a (rather loose)
relation between the aperture, the passband amplitudes (K, K2), and o: in
effect, a (soft) floor is placed under . On the other hand, the upper limit of the
spectrum of §2J clearly grows with o2. Thus for “moderate” values of o, the §2J
is as well-conditioned as possible. Several possibilities exist for pinning down
this range: guessing (the option pursued in numerical work reported here),
rigorous theoretical estimation (far too conservative), or adaptive estimation
during iterative solution of the linear stage of Newton’s method (a project for
the future).

Recall that the argument leading to this conclusion was based on the restric-
tion (13). Without this restriction, the argument becomes more involved, but
the conclusion is qualitatively the same: for sufficiently rough Ae, an inequality
like (22) holds. It is evident from the form of the expression Qéc that ¢’ # 0
will degrade the contribution of large—p traces to the lower bound, and this is
indeed the main quantitative effect. A rigorous argument of this nature, in the
context of the fully nonlinear problem, can be found in Symes (1988).
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4 Numerical Experiments

In this section we report an implementation of the algorithm suggested in Sec-
tion 2, and the results of some numerical experiments which establish its feasi-
bility. More extensive tests of the method will be reported elsewhere.

The implementation requires (1) a choice of discretization of the parameter
space and operators; (2} a choice of optimization strategy. We give sufficient
detail in both areas that the interested reader should be able to reproduce our
results.

4.1 Discretization

Both to maintain applicability of the convolutional model, and for the more
subtle reasons given in Section 3, it is necessary that the background velocity ¢
be quite smooth—much smoother than the reflectivity, for example. A simple
explicit way (though certainly not the only way) to ensure a given degree of
smoothness is to choose ¢ from a finite-dimensional function space spanned by
smooth functions.

For the space velocity profiles we took a manifold of exponentiated integrated
b-splines (see Figure 4):

nmod

c(z) = coexp /Z dz’/ E z:¥i(z)
0 i=1

where ¥i(2) = ¥ (nspl- (z—;;ﬁ-‘-)), ¥ a standard b-spline, and 2; = W zspl,
i =0,...,nspl are nspl+ 1 evenly spaced nodes. We set nmod = nspl — 3, so
that all summands vanish at z = 0 and z = zspl. See Figure 4.

The surface velocity co was regarded as a fixed parameter.

The perturbations é¢ have the form

nmod

de(2) = ; bz; /03 ¥ | c(2).

When values z > zspl are needed, both ¢ and éc are regarded as constant and
equal to their values at zspl.

The depth functions occurring in the various formulae are sampled on a fixed
grid {j dz : 0 < j < nz}, where nz - dz =: zyax > 2spl (“the z-grid”). Routines
were written which convert sampled z-grid functions (¢, éc) into spline coeffi-
cients (z,6z) and vice versa, and which satisfy certain adjointness conditions
detailed below.
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Time-slowness sections are regarded from the outset as sampled on a fixed
grid of size (nt + 1) x np, at given sample intervals dt and dp. We used one-way
time as the time parameter throughout.

4.2 Operators

The formulas for the incoherency C and its perturbation 6C from the appendix
and Section 2 require the travel-time change-of-variable and its inverse. These
were accomplished via interpolation. For example, the integral

2 dzl
7(z,p) = /0 )

is approximated using the trapezoidal rule on the z-grid, yielding an unequally
spaced set {r;} of travel-times. The time-function to be converted to a depth
function must then be evaluated at the 7;, which is done via piecewise-linear
interpolation. The total process has a truncation error on the order of dz2.

Derivatives with respect to z, t and p are replaced by simple 3-point centered
difference formulas, maintaining the truncation order. Discretization of C and
6C was accomplished by means of the formulas indicated in the Appendix.

The synthetic p-tau seismogram Slc,r] was computed using a centered 3-
point t-difference and trapezoidal rule approximation of the convolution integral.

4.3 Norms

The definition of the cost function J involves the L2-norm. As noted in Section
2, this should really include a factor of p, to most closely maintain the relation
with mean-square error in (z,t) domain. To simplify our calculations, however,
we ignored this point and defined the section L? norms by

nt np

NEIHE =" dtdp we(5)yw, (k)| Fjel?

j=0k=1

where 5 i 0

. 1 ifj=0, nt
wi(j) = { 1/ elsJe
1
1

wy (k) = { /2 ifk=1, np

else

i.e. the trapezoidal rule. With this choice, J is completely defined.

The importance of choice of norms in the model space [c, r] cannot be overem-
phasized. Even though the definition of J is independent of this choice, it is
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the main factor affecting the efficiency of the optimization. This is principally
because of the role of the model norm in the definition of the gradient. We
examine this point for the summand o2|||Clc, r]|||? of J, since it involves both
c and r. By definition, the gradient of this term is the (unique) model vector
(¢, 7] for which for any (8c, ér),

lime_o 1 (0?|||Cle, +€be, r + esrl|l|* = o2|||Cle, 7III%)
= ((¢,7), (be,é7))m
where <, >y is the scalar product in model space corresponding to the norm:

I8¢, 6711134 = ([6c, 67], [6¢, 67]) M-

(23)

(We assume that model space is a Hilbert space, since all efficient smooth opti-
mization methods are predicated on this assumption.)

A principal requirement ((i) in Section 3) is that the function [¢,r] —
[lICle, 7]|l{? is regular, i.e., differentiable. Examining (A2), we see that deriva-
tives of ér are involved in 6C. Since r,ér are to be allowed to be arbitrary
(grid-representable) functions, §C can ony be continuously dependent on ér,
as is required by regularity, if the model norm includes explicit control over
derivatives of ér. The obvious choice for the section part of the model norm is

671} = 370 Lany didpwils)w, (k) {[érjel?
+’D¢67‘jk|2 + le6rjk|2}

where D; and D, are 2-point one-sided difference approximations for 8/t and
0/0p. The subscript “1” stands for “first derivatives”; this is the discrete version
of the first in the Sobolev scale of norms, a basic tool in modern analysis of
partial differential equations.

For the velocity profile part, i.e. ¢, we can make use of the fact that C is
required to belong to a space of smooth splines.

We enforce the membership of ¢ in the spline manifold by parameterizing the
model in terms of the spline coefficients z; themselves, rather than the z-grid
values of ¢. Also, we tacitly use log ¢ and its perturbation, éc/c, as fundamental
quantities rather than ¢ and éc; this nondimensionalizes that part of the model
(note that r is already non-dimensional, by definition). Thus we need to express
the norm of §¢/c in terms of the éz;; this is easily accomplished via the mass
mairiz

M;; = /dz'.bﬂbj-
This is computed via the trapezoidal rule, of course. Then

a 6c

“E?”%’ = é6zT Méz.
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Note that we are measuring (.;"—zéf- rather than 6?" itself. Since é¢(0) = 0, a
bound on the former implies a bound on the latter, but the choice we’ve made
here weights the more oscillatory velocity perturbations more highly, and thus
tends to rotate the gradient in the direction of smoother éc¢’s, with favorable

computational consequences.

Now regarding the model as the pair [z,r] (rather than [e,7]), the model
norm is taken to be

1[5, 8rlli3 = pebe™ Mbz + urll6r.

Adjustment of the weights u., u, allows the gradient to be rotated in the z- or
r-directions; this scaling-preconditioning turns out to be important in achieving
rapid convergence.

4.4 Gradients, Hessians

First examine the incoherency component of J, as before. To write the result
in a revealing way, recall that 6C is linear in [6z, §7], and write 6C - [6z, ér] for
the value. Then the limit on the Lh.s. of (23) can be carried out to give

20%(8C - [z, 67),Clz, 7))L =

(24)
([6z, 67],20%6C* - Clz, 7])m
where the adjoint operator §C* is defined by the condition
(6Céz, b7, F)r2 = ([6z,67],6C™ - F)m (25)

which is to hold for arbitrary model perturbations [6z, é7] and (¢, p)-sections F.
Comparison of (23) and (24) reveals that

grad(a?[l|C|%)

[z, 7]
2¢26C* - C.

(26a)

Likewise, the Gauss-Newton approximate Hessian operator (Dennis and Schn-

abel (1983), §10.2) is given by
Hess(a?]||C|||%) - [6z, 7] = 20%6C* - 6C - [6z, 67). (26b)

Similar formulas hold for the term |[[|S — S 3444l

The calculations (26) are the principal parts of the quasi-Newton methods
to be introduced below. Thus efficient and accurate calculation of the adjoints
6C*, §S* are essential to successful optimization.
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4.5 Adjoints

The definition (25) of 6C* must be taken absolutely seriously. That is, even
though 6C is given (in principle) by an enormous matrix, §C* is not simply
the operator defined by the matrix transpose of §C. &6C* is related to the
matrix transpose, however, and this relation provides a convenient avenue for
computing §C*.

The scalar products involved in (25) may be written symbolically in the form
(X,Y)e = XTGY

where X and Y are parameter vectors and G is the Gram matriz of ( , )g.
Thus G is a positive-definite symmetric matrix of size equal to the dimension
of the parameter space.

In (25), two essentially different inner products are involved, on two different
parameter spaces (models [§z, é7], sections F), as well as a linear transformation
(6C) mapping one parameter space into the other. Accordingly, consider two
inner products of the form given above, with Gram matrices G,, v = 1,2,
and a linear transformation A, given by a matrix of appropriate dimensions,
mapping one parameter space into the other. The adjoint of A is defined by the
abstraction of (25):

(AX1, X2)g, = (X1, A" X3)a,

for arbitrary X, in the v*# parameter space, v = 1,2. Written in matrix form,
(AX1)TG1 X2 = XT G A X,
from which it is clear that, as matrices,
A* = G5ATG,. (27)
To see what (27) implies for (25), write §C in components:
6C =[8.C,6,C).

This is the correct matrix representation if the model perturbation is written as
a column vector:

5C - [ bz ] —6.C 6z +6.C-6r.
ér

. [ 8.C
8C" = < 5,C* )

(6:C - bz, F)2 = 62T M(6,C" - F) (28a)

Thus

where
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and

(6,C - 6r, F)pa2 = (67,6,C* - F);. (28b)

Identify a section F with a vector in any convenient fashion, e.g. by listing
the traces (columns) sequentially. Then the L2-inner product, discretized by
the trapezoidal rule, is realized by the scaling matrix S (which scales the edge
entries by 1/2, the corner entries by 1/4, and everything else by 1):

(F1, Fo)pa = FTSF,

for any sections Fy, Fs.
Thus (27) applied to (28a) gives

6:C* = M~16,CTS. (29a)

For (28b), it is necessary to write the “Sobolev” inner product ( , ); in the
canonical form given above; its Gram matrix turns out to be ezactly the matriz
of the discrete Neumann problem for the usual five-point discretization of the
Laplace operator, which we shall denote by N. Thus

6,C* = N"16.CTS. (29b)

In principle, this completes the calculation of the adjoints, hence of the gradient
and Hessian. In practice, inspection of (26a, b) shows that we need only routines
which apply §C* to a section, not the entire matrix of §C*. This extremely
important observation saves much computational effort and storage. In fact,
application of the trapezoidal scaling operation represented by S is trivial, and
the transpose operations 6,CT, 6,CT are relatively easy to work out, as the
same sort of recurrence rules that form the “forward” calculations of 6,C, §,.C.
Thus we represent (29a, b) in the alternate forms: for an arbitrary section F,

6C*-F = z

Mé = 6§,CTSF (30a)
65C*- F = 7

N# = 6CTSF (30b)

We have just described how to compute the right-hand sides of the second equa-
tions in each of these pairs. To solve the linear system with the spline mass ma-
trix M, we used a standard linear equation solver (LINPACK: SPOFA, SPOSL),
as the spline space is small-dimensional—i.e. the background model has few de-
grees of freedom, < 20 in all of our experiments. To solve the discrete Neumann
problem, which is quite large (nt = 300, np = 40 in some experiments), we took
advantage of explicit knowledge of the discrete Neumann eigenfunctions (tensor-
product cosines) to design an FFT-based discrete Neumann solver, which solves
the second member of (30b) very efficiently.
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This step would have been more difficult if the factor p had been included
in the integral defining ( , )i, as it should be. Then N would include a p-
difference approximation to the Bessel operator of order zero, with Neumann
condition at p = pmax (a residue of the cylindrical geometry implicit in the
proper definition of the Radon transform). Thus fast Bessel transform software
would be required.

4.6 Interface with Optimizer

Since the optimizer described below accepts standardized n-vector arguments, it
was necessary to “bundle” the computations just described into procedures with
standard calling sequences. We used a pack/unpack routine, which collapses the
spline/section pair [6z, ér] into a vector of length nspl + (nt + 1) * np, and vice
versa.

4.7 Choice of Optimizer

The tests reported below were made using a so-called truncated Newton code.
This code is based on the model trust region principle (Dennis and Schnabel
(1983), section 6.4) and on the extensions to it introduced by Steihaug in his
Yale thesis (Steihaug (1981)). Essentially, the Gauss-Newton linear step

Hess J - [6z,6r] = —grad J

is solved by a conjugate residual iteration (Golub and Van Loan (1983), Ch. 10),
which is terminated when the step estimate exits a ball about the current solu-
tion estimate, the radius of which is determined by a simple and robust updating
strategy. This expedient avoids expensive conjugate residual steps taken outside
the region in which the linearized model can be “trusted”, hence the name. A
more lengthy description of the code can be found in Santosa and Symes [1986],
Chapter 9, where the same codes were used in solving the nonlinear output
least-squares problem, using finite difference synthetic seismograms instead of
the convolutional model.

An important amendment of the trust region idea is natural in this problem.
All models in the iteration are supposed to have a fixed rectangle [0,¢max] X
[0, Pmax] as a precritical set. This may cease to be true during an update step,
if the velocity is increased by too much at some depth. The computation of the
gradient simply flags this occurence, and the algorithm attempts a smaller step
in the same direction. Thus the trust region, for problems like the present one,
may involve in a natural way constraints on the validity of the model itself.
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4.8 Numerical Experiments

We performed a number of numerical experiments using the velocity profile
¢ (upper curve) and perturbation Ac (lower curve) exhibited in Figure 6 to
generate the p-tau convolutional model data of Figure 8, by convolving with a
Ricker wavelet with center frequency 20 Hz. A target background velocity with a
lower velocity zone was chosen because the structure of such a zone is impossible
to determine from refraction arrival times, and intrinsically more difficult for
least-squares methods — see Santosa and Symes [1986]. The velocity, hence
the slowness, were normalized against the surface velocity, by changing the
measure of depth to normal-incidence time for a constant background velocity
equal to the surface velocity. This step also normalizes the slowness to the
range 0 < p < 1. A happy side-effect of this normalization was to reduce
substantially the numerical imprecision resulting from mis-scaling inherent in
the use of physical units.

The algorithm explained in the preceding subsections was used to extract
estimates of ¢ and r from the data of Figure 8. Parameters common to all
experiments were

o=1, ,p.=10"% o, =1

We found the small value of y, necessary to rotate the gradient of J toward the
“c-" direction.

In all cases, we observed the same pattern. We began with the simple esti-
mate ¢;p 401 = const. (= 1), 74001 = 0. The first Newton step did not change
the estimate of ¢, since the incoherence of r = 0 vanishes for any velocity model.
Otherwise put, since there are initially no reflectors, there is initially no move-
out information in the reflectivity with which to update the velocity model. The
first iteration is thus devoted entirely to minimizing

or
”If* 5{ - Sdata|“2

which amounts to deconvolving the data in a least-squares sense to find an initial
(nontrivial) estimate for r. Unless otherwise noted, each Newton step (including
the first) is approximated by five conjugate-residual iterations.

In the second and subsequent iterations, the velocity model is improved, and
data-noise-generated incoherency in the reflectivity is reduced.

Figure 9 shows the velocity-estimate results of five and ten Newton steps
steps from both the constant velocity model (curve 0) and five Newton steps
from the velocity model identified as the curve 1. The results are labeled as
curves 2, 3 and 4 respectively. In all cases we used 8 spline nodes (thus the
velocity is determined by 5 parameters). This result is evidence for the inde-
pendence of initial estimate of the final estimates. In particular, the results of
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ten iterations from a constant initial model, and five iterations from the “in-
correct trend” initial model (curve 1) are virtually identical. The error is quite
stable and is due to the fact that the target is not a member of the space of
velocities defined by the eight-node spline basis — i.e. we get the “closest”
eight-node velocity estimate.

These estimates are reasonably accurate, especially considering the compu-
tational work required. Apparently the incoherence resulting from the erroneous
basement velocity was insufficient to cause further corrections, or possibly the
calculation of the incoherence is substantially inaccurate there — see comments
below. Most of the reduction in J (about an order of magnitude) came in the
first iteration, in which the data is deconvolved. Yet another order of magnitude
is gained in the remaining iterations, in which the incoherence is reduced.

Two major points have emerged from the experimental work conducted thus
far. The first concerns the number of spline nodes: the outcome is in some
ways quite sensitive to this number. For example, the experiment of Figure
9 was repeated with 16 nodes instead. Five, ten, and thirty iterations of the
Gauss-Newton process produced the curves labeled 1, 2, and 3 in Figure 10.
These look quite “wild,” and certainly the mean-square error is much greater
than is the case with those in Figure 9. Recall however that the principal role
of the background model is to supply travel-times. A quite different picture
emerges when the travel-times are plotted against the “true” travel time curve
(from the velocity profile of Figure 6). In Figure 11 are displayed (normal-
incidence) travel-time curves from the “exact” velocity, curve 1 from Figure 9,
and curves 1 and 2 from Figure 10. In fact, the latter two curves are closer
to the “true” travel-time than is the former, despite their correspondence with
velocity estimates having larger L2-error. This relation emerges more clearly
when the (normal incidence) travel-time errors are plotted: see Figure 12.

Apparently, the result of increasing the number of degrees of freedom in the
model is to allow a closer fit to to the travel-time, at least at points correspond-
ing to major reflectors, but at the cost of an oscillatory error which may be large
in the mean-square sense. This is easy to understand: the errors oscillate on a
length scale too short to affect the travel-times between major reflectors, hence
correspond to small eigenvalues of the incoherence Hessian. While the effect
on travel-times of this sort of error is a¢ priori small, it does produce irritat-
ing ambiguities in the velocity estimate, and (more important) has a negative
impact on the convergence of the iterative scheme. Several approaches to the
removal of this ambiguity suggest themselves. Trial-and-error determination
of the optimal spacing for spline nodes, as has been done here, is clearly un-
satisfactory. Systematically increasing the number of nodes until a good fit is
obtained requires some notion of an “acceptable” level of fit, and such infor-
mation may itself only be obtainable by trial-and-error. A more satisfactory
approach might be adaptive estimation of small Hessian eigenvalues, through
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the close relation of conjugate-residual iteration with the Lanczos algorithm
(Golub and Van Loan [1983], Ch. 10), and penalization of the corresponding
eigenvector components. For the application of such “iterative deflation” to lin-
ear systems see Chan [1986] (also Meza and Symes [1987]). Since the number of
small eigenvalues associated with velocity perturbations is small, and since their
characterization is somewhat independent of the current velocity estimate, this
deflation strategy should work rather well in combination with Gauss-Newton
iteration. Finally, since the culprit is oscillatory error, penalization of a velocity
derivative may regularize this problem satisfactorily. Computational trials are
in progress; results will be reported elsewhere.

A second point concerned the density of p-samples. Inspections of Figure 8
clearly show that for large p and ¢, the moveout difference in neighboring traces
may be a substantial fraction of a wavelength. As we have based our difference
approximations to the incoherency on centered difference approximations to
the coordinate derivatives %, :—p, the possibility exists of severe undersampling
in p . In fact when we increased Ap to .02 (from .01 as in Figure 8), the
computation analogous to that for Figure 9 gave completely erroneous results
for the deeper part of the velocity profile, apparently because the part of the
incoherency due to deeper reflectors was grossly underestimated. We suspect
that residual inaccuracy in the deeper parts of the curves in Figure 9 is due to
a milder version of the same effect.

Besides finer sampling, methods to overcome errors in incoherency due to
undersampling include higher-order difference formulas and difference formulas
better adapted to the moveout. Indeed, low-order differences along even a crude
approximation to the correct moveout curve should produce better results at
coarser sampling than the coordinate derivatives used in our present code. These
ideas are also under investigation.

It might be objected that, while the output includes an estimate of the
travel-time reflectivity section r(¢, p), no estimate of the corresponding velocity
perturbation Ac(z) is provided. The final reflectivity is not necessarily entirely
coherent, and so does not correspond to any Ac(z), strictly speaking. Nonethe-
less, an estimate may be produced by stacking r(¢,p) on the basis of equation

(5), i.e.
Ac(z) ~ %}3 /OPHM dp v=%(z,p)r(7(2,p), p)-

This output might truly be regarded as the final image produced by an iterative
before-stack migration, specialized to constant-density acoustics.

We have implemented this post-inversion stack of the final reflectivity es-
timate, and display the results for the reflectivity corresponding to curve 3 in
Figure 9. When stacked with constant-velocity moveout, the estimate of Ac(z)
is completely erroneous in phase and wrong by a factor of perhaps 3 in ampli-
tude (Figure 13). When stacked with the final velocity estimate from Figure 9
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(curve 3), the estimated Ac(z) has essentially correct phases and amplitudes
for the major events (Figure 14), as compared to the Ac(z) actually used to
generate the data. Of course, none of the subwavelength-scale variation in the
true Ac(z) could appear in the reflectivity r(t,p) or in the stacked estimate, so
a more interesting comparison is the p-tau section generated using the velocity
from Figure 9 and the stacked Ac(z) from Figure 14. This is displayed in Figure
15, and the difference of Figure 15 and Figure 8, plotted on the same scale, in
Figure 16.

4.9 Summary

We have described a preliminary implementation of the coherency optimiza-
tion method, exhibited the results achievable with this rather crude code, and
suggested some issues worthy of further examination. Given the rather large dis-
cretization errors in our present implementation, which play the role (at least)
of data noise, the stability of the final estimates and the rate of convergence
both appear quite satisfactory: to a limited extent, we appear to have satisfied
the criteria (a)—(c) stated in Section 2.

Extensive noise studies, tuning, modifications along the lines suggested above,
and direct comparison with output least-squares optimization will be reported
in a future publication.

5 Coherency Optimization for Laterally Heterogeneous
Models

The essential ingredients of the approach to velocity inversion sketched in Sec-
tion 2 were:

(i) parameterization of the reflectivities as time “sections” (i.e. traces),
so that the seismogram is a regular function of the reflectivities, one
reflectivity (trace) per plane-wave “shot” (synthetic source);

(ii) referral of each time-section reflectivity to depth, and assessment of
the dependence of the resulting suite of depth sections on the “shot”
parameter (i.e. slowness).

In this section, we maintain the fiction that the seismogram is adequately
approximated by the multi-dimensional version of the convolutional model, i.e.,
the linearization about a smooth background velocity, and moreover apply high-
frequency asymptotics freely. A natural interpretation of (i) and (ii) emerges in
this context.
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First recall why the parameterization by two-way time resulted in regular-
ity of the seismogram as a function of both the background velocity and the
reflectivity. In effect, each reflector was associated with the time of arrival,
at the surface, of its reflection. If the background velocity is changed, then
depth-parameterized reflectors remain fixed while their reflection times change,
whereas time-parameterized reflectors remain fixed while their depths change.
In the former case, high-frequency arrivals are time-shifted, while in the lat-
ter case they are not. The time-shift is a time derivative in the infinitesimal
limit, and its appearance marks the loss of regularity of the depth-parameterized
reflectivity-to-travel-time map. For time-parameterized reflectivities, no such
time shift occurs as a result of background velocity change, and regularity is
maintained.

Reflectors and reflection arrivals are both (near)-singularities, i.e. locii of
high-frequency energy. In the high-frequency limit, therefore, we must ask: how
can we parameterize reflectivity so that a singularity in the reparameterized
reflectivity corresponds, under conversion to ordinary spatial coordinates and
mapping to the seismogram, to a singularity in the same location? In several-
dimensional problems, singularities may have orientations, and these must be
preserved as well.

This question is answered by a theorem of Rakesh (Symes (1985), Rakesh
(1988)), together with a construction presented for this problem by Beylkin
(1985). To fix ideas, suppose we consider the linearized acoustic problem for a
point source, which models a shot-gather:

1 0% 2, - 2" d%ug

c? Ot e o2
where r = Ac/c is the “reflectivity”, ¢ is the background velocity, u is the
scattered field, and ug is the reference field satisfying

1 62u0
¢z ot

z, being the source location. Rakesh showed that for the impulsive case (f(t) =
8(t)) a singularity in r at the subsurface location y, across a surface element with
normal 7, corresponds to a singularity in the reflected field at receiver location
z,., time t,, only if there exist

- V?uo = f(t)8(z - z,),

- an incident ray 4; associated with the reference field, emanating from
the source-point z, at t = 0;

— areflected ray +,, passing over the receiver point z, at time %,

so that 7; and 4, meet at the reflector point y at some intermediate time,
making equal-angles with the reflector normal 5. For non-impulsive but broad-
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band time signatures f(t), this rule governs the arrival of (primary-reflected)
high-frequency energy.

This is exactly the usual picture of the reflection process, of course. Rakesh’s
theorem, which justifies this picture in terms of the wave equation, holds in
complete generality, so long as the background velocity ¢ is smooth. It tells
us exactly which singularity in the time section must be mapped to a given
singularity in the depth section if the seismogram is to return such singularities
to their original position and orientation. Beylkin’s construction, on the other
hand, applies only when no caustics exist in the incident field, i.e. each depth
point y is joined to the source point z, by a unique incident ray. Then any
mapping having the singularity-moving properties just described must differ
only by a (possibly frequency-dependent) amplitude modulation (technically, a
pseudodifferential operator) from the Kirchhoff migration formula

Ky, z,)
fdz, w(z,,y,2,)7(z,, 7(z,, ¥, 2.), £,)-

r(y, z,) (31)

Here 7(z,,y,2,) is the two-way reflection phase, i.e. the time from gz, to y to
z,, and w(z,,z,,y) is a slowly-varying amplitude modulation.

Thus: the reflectivity time-sections 7(z,.,t,z,) will be converted to reflec-
tivity depth sections r(y,z,) via a Kirchhoff migration formula like (31). This
implicitly defines the seismogram as a function of #(z,,t,z,), and guarantees
that it is regular as a function of ¢, 7. Note the apparent similarity of (31) to the
travel-time change-of-variables, appropriate in the layered case (formula (A.1),
for instance).

The second ingredient (ii) in the coherency optimization approach is ev-
idently the condition that the depth-parameterized reflectivities r(y,z,) are
actually independent of z, (“Every shot sees the same earth”). Regarding
the source locations as filling up a continuum, this amounts to the condition
Ve, m(y,z,) = 0. The composition rules for oscillatory integrals (the local cal-
culus of Fourier Integral operators—e.g. Duistermaat (1975), Ch. 2) give the
result:

Vg, r=Vy Kif = K(Vg, + P)F

up to an error rapidly decaying in frequency content, where P is a pseudodif-
ferential operator in z, and ¢, i.e. an oscillatory integral of the form

Pi(z,,t) = //dg ds dk dw e‘&'(ir"ﬁ)"'“’("’)]p(gr,t,g, s, k,w)i(z, s).

The amplitude p depends on the ray geometry, i.e. on the background velocity
¢, but the phase k(z, — z) + w(t — 5) does not. Thus (V + P)F is regular as
a function of ¢, i.e. perturbing ¢ does not result in the appearance of higher
derivatives of 7, just as was the case for the formula (A.1) for Cle, r].
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Now let L be any operator from depth-parameterized reflectivities to sections
which has the reverse effect to K on singularities: for instance L might be taken
as the linearized seismogram operator itself. Then another application of the
same reasoning shows that

Cle, ] := LV, KF

is regular as a function of ¢,# for the same reason. We take this formula as
our definition of the incoherency for the laterally heterogeneous acoustic prob-
lem. Note that L must be computed to form the seismogram, and K is the
Kirchhoff migration operator (or an equivalent). Thus Clc, ] involves only
well-understood computations. Also, the astute reader will note the immediate
resemblance to the definition of C|c, r] given in Section 2.

We conclude that both main ingredients of coherency optimization, as ex-
plained in Section 2 for layered acoustics, generalize in an acceptable way to a
simple laterally heterogeneous model. Many details remain to be settled, some
of which will doubtless be crucial to computational efficiency. Also, the anal-
ysis of Section 3 remains to be generalized. A technical complication is that,
while the operators L and K exist in general, the composition rules leading to
the regularity of the incoherency C|c,7] must be modified when caustics are
present. Nonetheless, we have established that the coherency approach is not
conceptually restricted to layered problems.

To end this section, note again that 7 — K serves the role of the travel-time
transformation. The first recognition of the special role of travel-time in regu-
larizing 1-d problems was probably the work of Gray (1980), as noted above.
Some time later, Gray and Hagin (1984) attempted generalized travel-time coor-
dinates for laterally heterogeneous point source problems, with limited success;
travel-time (ray-straightening) coordinates per se do not exist in general for
several-dimensional problems. Nonetheless, the operator K accomplishes the
principal effect of the 1-d travel-time coordinate, i.e. to make reflector location
independent of background velocity in both the (reparameterized) reflectivity
and in the seismogram simultaneously. Of course, K is a more complicated op-
erator than a change of coordinates, except for 1-d (plane-wave, layered model)
problems.

6 Discussion and Conclusion

6.1 The scope of the coherency approach
From a theoretical point of view, and perhaps from a practical one as well, the

chief defect in the results of Sections 2 and 3 on the layered acoustic problem is
the absolute lack of any provision for multiple reflections. This defect is cured
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in the companion paper Symes [1988], in which the fully nonlinear bandlim-
ited layered velocity inversion problem is treated with full mathematical rigor.
We reach a qualitatively identical conclusion about the appropriate version of
coherency optimization: that is, it gives a (regularized) solution of the inverse
problem stably dependent on near-consistent data, provided that sufficiently
many reflectors are present, i.e. that the target profile is sufficiently rough. We
give a precise sense for “rough”, and a relation emerges between stability, aper-
ture, bandlimits, and roughness (reflector density) very similar to that explained
in Section 3.

Both convolutional model and fully nonlinear versions of other layered in-
verse problems should succumb to the same approach. We mention specifically
nonconstant-density acoustics, the “marine” elastic model (with sources and
receivers in an overlying fluid layer), and either of these with the source time-
dependence and directivity also regarded as unknowns. Some idea of the novel
features of these problems in convolutional approximation may be gleaned from
Sacks and Symes [1987] and Bube, Lailly, Sacks, Santosa, and Symes [1987]. No
technical obstacles appear to lie in the way of an analogous treatment of these
problems.

Note that the density, regarded as independent of velocities, will not be
recovered with trend, in any of these problems, as density trend perturbations do
not affect ray geometry. This gross density ambiguity is well-known (Tarantola

1986) and has been observed in output-least-squares results (Canadas and Kolb,
1986).

The program outlined in Section 5 appears feasible. On the other hand,
while an analogous coherency optimization principle can be formulated for fully
nonlinear laterally heterogeneous models, its analysis will require fundamental
advances in the understanding of wave propagation in rough media.

6.2 Conclusion

We have presented a novel approach to the reflection seismic inverse problem,
which has its roots in utterly commonplace concepts in seismic data processing.
We have formulated this coherency optimization principle precisely for the con-
volutional approximation to the layered constant-density acoustic model, and
suggested both analytically and numerically that its solution yields accurate
and stable estimates of both velocity trends and reflectivities, to the extent that
these are determined by the precritical plane-wave data set used. Our anal-
ysis indicated that coherency optimization should require markedly less com-
putational effort than output-least-squares inversion. Finally, we formulated
an analogous principle for laterally heterogeneous velocity inversion, a problem
for which output-least-squares inversion is so inefficient as to be infeasible. It
remains to be seen whether coherency optimization yields a computationally
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tractable approach to such several-dimensional problems.
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Appendix. Computation of a derivative

This appendix details the calculation of the derivative of the incoherency
Cle,r] = [g—p(v‘zror)] o(
= —2pr+ [v"2§lp(ror)] o (A1)
- ¢
= =2pr4v 20((%——p%§fov)

in which have been used the identities

Lotz —2p =p
L=-pfsv
Clearly
6C =6.C+6.C
with
8.C = Clc, br].

On the other hand, an easy calculation shows that

¢ be
6 = /_.
(vo(ouc3

So from the third line in (A.1)
6.C = 6(v7%0¢) [%(ror)] o(
—pv~2o(ds foc v

= =2[%+ 5% [Fvi]o¢ [%(ror)] o(

—p [fy v 3Abc+v72 [§ Abc] 0 (.

(A.2)

An alternate form of (A.2) follows from the identity

f§v = 6(fswo0y?)
QfJ(voC)é(voC):2f066(vo<)or.

So, using the notation

Qéc 8(vol)or

A% (et Zov [y ves
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the first line in (A.2) may be re-written

5,0 = -2 [v‘aQéc%(ror)]o(

o5 (A.2))
—2pv=20 (Y [ Qbe.

For section 3 we require an evaluation of §.C when r is coherent, i.e. (5) is
satisfied. Then for suitable Ae,

Moreover, from (A.1),

aa—p(r or)o({ =2p(v? o {)r
so (A.2") becomes
8.C = —2p{2[Qbc-v']o( - r+[v=2 [Qbc]) 0 (2L}

= —2p{2(Qéc)vc3Ac+ ([ Qbc)v1 L (A24¢2) o}
= -2p{2(Qéc)Ac2Ac

+(f Qéc) (2A3c'p?(22) + ¢ 1A 2 (82)) } o¢
= —2p{2[(Q6c)Ac™! + (f Q6c)p?A3] (42)

+[(J Qbc)e™A] Z(22)} o¢.

For our computations, we used the formulas (A.1) and (A.2') with

(3ptron) oc

computed as in the last line of (A.1).

(A.3)
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FIGURE CAPTIONS

. Smooth velocity model (upper curve) and perturbation (lower curve):
the latter is non-zero only where the former is constant (this is the
situation analysed in section 3). Horizontal scale is one-way time at
surface velocity.

. The coeflicient A (display (18)), normalized to remove velocity depen-
dence.

. The coefficient A, (display (19)), normalized to remove velocity depen-
dence.

. (a) cubic b-splines: 5th (solid) and 7th (dashed) of 12 nodes in interval;
(b) indefinite integrals of splines in (a).

. Differences: 6th - 5th (solid), 7th - 6th (dashed) spline integrals.

. Smooth velocity model (upper curve) and velocity perturbation (lower
curve) used to generate data for coherency optimization experiments.

. Eigenvalues 2 __, (11)7“ and fnmin as in displays (20) and (21).
g #ma:z: /'Lm

. Plane wave section generated from model displayed in Figure 6, using
a Ricker wavelet peaked at 20 Hz.



9. (0) target model, from Figure 6 (solid curve);

(1) a non-constant initial model (short dashes);

(2) result of 5 Gauss-Newton steps starting at constant model

(long dashes);

(3) result of 10 Gauss-Newton steps starting at constant model
(dash/cross);

(4) result of 5 Gauss-Newton steps starting at model (1) (short/long
dashes).

10. Results using too many degrees of freedom in model (16 nodes):

(0) target model (solid curve);

(1) Gauss-Newton steps (short dashes);

(2) 10 Gauss-Newton steps (long dashes);

(3) 30 Gauss-Newton steps (short/long dashes)

11. Two-way travel time curves at normal incidence:

(0) target model (solid curve);

(1) curve 2, Figure 9 (short dashes);

(2) curve 1, Figure 10 (long dashes);

(3) curve 2, Figure 10 (short/long dashes).

12. Two-way travel-time errors:

(0) between curves (0) and (1), Figure 11 (solid line);
(1) between curves (0) and (2), Figure 11 (short dashes);
(2) between curves (0) and (3), Figure 11 (long dashes).



13.

14.

15.

16.

Stack (solid line) of reflectivity estimate corresponding to Figure 9,
curve 2, at constant velocity, compared with target velocity perturba-
tion (dashed line).

Stack (solid line) of reflectivity estimate corresponding to Figure 9,
curve 2, at velocity given by Figure 9, curve 2, compared with target
velocity perturbation (dashed line).

“Synthetic” section produced using velocity from Figure 9, curve 2,
with stacked velocity perturbation estimate from Figure 14.

Difference of Figures 15 and 8.
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